Access Site Vascular and Bleeding Complications Following Transfemoral TAVI

Young-Hak Kim, MD, PhD

Heart Institute, Asan Medical Center, University of Ulsan College of Medicine

Definition of Access Related Vascular Complications

Major Complications Clinical sequele

Minor Complications No clinical sequele

VARC-2- Major Vascular Complications

- Any aortic dissection, aortic rupture, annulus rupture, left ventricle perforation, or new apical aneurysm/pseudo-aneurysm OR
- 2. Access site or access-related vascular injury (dissection, stenosis, perforation, rupture, arteriovenous fistula, pseudoaneurysm, hematoma, irreversible nerve injury, compartment syndrome, percutaneous closure device failure) *leading to death, life-threatening or major bleeding*, visceral ischemia, OR*
- 3. Neurological impairment OR

VARC-2- Major Vascular Complications

- 4. Distal embolization (non-cerebral) from a vascular source requiring surgery or resulting in amputation or irreversible end-organ damage OR
- 5. The use of *unplanned endovascular or surgical intervention* associated with death, major bleeding, visceral ischemia or neurological impairment OR
- 6. Any new ipsilateral *lower extremity ischemia* documented by patient symptoms, physical exam, and/or decreased or absent blood flow on lower extremity angiogram OR
- 7. Surgery for access site-related *nerve injury* OR
- 8. Permanent access site-related nerve injury

Incidence of Major Vascular Complications After TAVI*

- 1. Leon MB et al. N Engl J Med. Oct 21;363(17):1597-607.
- 2. Thomas M et al. Circulation. 2010 Jul 6;122(1):62-9.
- 3. Rodes-Cabau J et al. J Am Coll Cardiol. 2010 Mar 16;55(11):1080-90.
- 4. Lefevre T et al. Eur Heart J. Nov 12
- 5. Eltchaninoff H et al. Eur Heart J. Sep 15.

- 6. Medtronic. Data on file. COR 2006-02: 18 Fr Safety & Efficacy Study Re-Analysis, August 14, 2009.
- 7. Zahn. German Registry EuroPCR 2010, Paris, France.
- 8. Ludman. UK Registry. EuroPCR 2010, Paris, France.
- 9. Petronio. Italian Registry. EuroPCR 2010, Paris, France.

Vascular complications after TAVI Meta-analysis

0	utcomes	Reported Rate min,max (%)	Cumulative rate	₽ (%)	Rate Estimated (%)	[95% CI]
	Major	5.0-23.3	282/2417	81.3	11.9	[8.6,16.4]
	Minor	5.6-28.3	203/2142	88.8	9.7	[6.7,14.0]
	AII	9.5-51.6	511/2740	92.6	18.8	[14.5,24.3]

Généreux P et al. JACC 2012;59:2317

Major Vascular Complications PARTNER 1 TF-Cohort A and B

CardioVascular Research Foundation

Genereux P et al. J Am Coll Cardiol 2012;60:1043

Vascular Complication and Mortality PARTNER Cohort B (Inoperable)TF, Sapien

Vascular Complication and Mortality PARTNER Cohort A (High-risk) TF, Sapien

Vascular Complications and Mortality SOURCE XT Registry: SAPIEN-XT

Can we prevent ?

Predictors of Major Vascular Complications

- Hayashida et al. JACC Intv 2012
 - SFAR HR 186.2 [4.41, 7,855.11]
 - Early experience HR 3.66 [1.17, 11.49]
 - Femoral calcification HR 3.44 [1.16, 10.17]
- Van Mieghem N et al. Am J Cardiol 2012
 - Female gender HR 1.63 [1.12, 2.36]
 - >19Fr system 2.87 [1.68, 4.91]
- Généreux et al. JACC 2012
 - Female gender HR 2.31 [1.08, 4.98]

Learning Curve and Vascular Complications

1. Fearon, ACC 2013

- 2. Hayashida, JACC Card Int 2011; 4(8): 851-8
- 3. Nuis, Am J Cardiol 2011; 107: 1824-1829

4. Toggweiler, JACC 2012; 59(2): 113-8

Sheath Size and Vascular Complications

Patients treated with the >19Fr sheath (ID) had

- Significantly more vascular complications (22% vs 12%, p < 0.001)
- more bailout interventions for access-related issues (20% vs 10%, p < 0.001)

Required Arterial Access Diameter SAPIEN XT (before e-sheath)

Valve Size	Sheath size	Diameter
23mm	18F	> 6.0mm
26mm	19F	> 6.5mm
29mm	20F	> 7.0mm

Improved Current Delivery System Reduced Sheath Size: Expandable Sheath

Edwards eSheath Expandable Introducer Sheath

The Edwards expandable sheath (1) features a fold that expands as the NovaFlex catheter moves through (2,3).

Required Arterial Access Diameter

CoreValve (currently used)

Valve Size	Sheath size	Diameter	
26mm			
29mm	18F	> 6.0mm	
31mm			

Vascular Cx and New Delivery System SAPIEN vs. SAPIEN XT in PARTNER IIB

	SAPIEN (n=271)		SAPIEN XT (n=282)		
Events	n	%	n	%	p-value
Vascular:					
Major	42	15.5	27	9.6	0.04
Minor	20	7.4	14	5.0	0.23
Bleeding:					
Disabling	34	12.6	22	7.8	0.06
Major	44	16.4	44	15.7	0.84
Patients with transfusions	80	29.5	73	25.9	0.40

Medical Cente

Vascular Complications and New Delivery System CoreValve with Accutrack system

	MCV	MCV + AT	D Value	
	N=90	N=68	F value	
Life-Threatening Bleed	28 (31.1)	8 (11.9)	0.005	
AKI Stage 3	13 (14.4)	1 (1.5)	0.005	
Major Vascular Complications	13 (14.4)	2 (2.9)	0.015	
Combined Safety Endpoint	37 (41.1)	10 (14.9)	<0.001	

AMC Experience

Access Site Management in AMC

30-day Outcomes

	Total (n=194)	Edward (n=96)	CoreValve (n=98)	P value
Mortality	8 (4.1%)	5 (5.2%)	3 (3.1%)	NS
Major Stoke	2 (1.0%)	1 (1.0%)	1 (1.0%)	NS
Vascular Complication	6 (3.1%)	3 (3.1%)	3 (3.1%)	NS
AKI ≥ Stage 2	2 (1.0%)	1 (1.1%)	1 (1.0%)	NS
Post AR ≥ Moderate	22 (11.8%)	7/92 (7.6%)	15/95 (15.8%)	0.083
Implant of ≥ 2 valves	12 (6.2%)	0	12 (12.2%)	< 0.001
Device success	158 (91.4%)	86 (89.6%)	72 (73.5%)	0.004
Permanent Pacemaker	23 (11.9%)	1 (1.2%)	22 (22.2%)	< 0.001
Coronary obstruction	4 (2.1%)	1 (1.2%)	3 (3.1%)	NS

Patient selection Vascular Access Screening CTA: 3D reconstruction

Surgical Cut-down and 22 Fr Sheath Insertion

Two or Three ProGlides

ProStar XL: Not available in Korea

Case 1 – Iliofemoral CT Angio

Minimal diameter Rt. FA 7.3 mm

Minimal diameter Lt. FA 7.8 mm

Pre-procedural Angiography

26mm Sapien XT, 18F Sheath

Final Angiography

Management of Access Complication

- Ilio-femoral rupture
 - Surgery, occlusion balloon, covered stent
- Dissection
 - Balloon or stent
- Infection
 - Medication or surgery
- Stenosis/thrombosis
 - Balloon or surgery, rarely stenting
- Avulsion
 - Occlusion balloon and prompt surgery
- Pseudoaneurysm
 - Compression, thrombin injection, surgery
- Bleeding
 - Compression, hemostasis

Case 2: Very early painful memory Two Sapien Retroplex, 22 Fr sheath

Arerial Avulsion and Perforation

Balloon occlusion, emergent surgical repair

Case 3: Iliofemoral CT Angio

Iliofemoral CT Angio

Pre-procedural Angiography

PTA for Rt CIA

PTA for Rt EIA

Sapien XT 26mm, e-Sheath 18F

Final Iliac-femoral Angiography

Case 4: Iliofemoral Angio

Minimal diameter Rt. FA 7.3 mm Minimal diameter Lt. FA 6.6 mm

CardioVascular Research Foundation

Pre-procedural Iliac-femoral Angiography

CoreValve 29mm, Sheath 18F

CardioVascular Research Foundation

Follow-up

In-hospital Course

- Permanent pacemaker was inserted due to complete AV Block after successful CoreValve Implantation.
- Inguinal mass was observed at right inguinal but the size was decreased.

Outpatient History

- Rt side claudication occurred.
- Thrill was felt at right puncture site.
- Ankle-brachial index in the right side was 0.73.

Stenosis at Access Site

Angiography

Balloon Angioplasty

Vascular Access Complication: TF

- Vascular access complication can be associated with acute fatal outcome of TF-TAVI.
- With accumulation of experience and improvement of device, the incidence of vascular complications is decreasing.
- New-generation device will overcome the contemporary limitation of access site complication.
- Integration of PTA technique sometimes enables safe TF-AVI in selected cases.